Linux驱动 | 从0写一个设备树节点实例
sinye56 2024-11-10 11:26 3 浏览 0 评论
一、前言
设备树是每一个Linux驱动工程师都必须掌握的一个知识点,有很多之前做单片机的朋友刚接触Linux驱动时,会一脸懵!
其实设备树的使用并没有大家想像的那么复杂,对于大部分工程师来说,只要会修改即可。
很多粉丝留言说,希望彭老师提供一个设备树到驱动解析的实例。
必须安排!
在学习设备树之前,大家一定要搞清楚什么是platform总线,请详细学习下面这篇文章:
《手把手教Linux驱动10-platform总线详解》
关于设备树理论部分内容请学习下面这篇文章:
《手把手教linux驱动11-linux设备驱动统一模型》
关于驱动基础文章,可以去B站学习一口君的入门视频:
《从学Linux驱动入门视频》
https://www.bilibili.com/video/BV1d5411A7VJ?spm_id_from=333.999.0.0
有了这些基础知识后,我们就可以来编写一个设备树的实例,
下面彭老师就给大家讲解如何自己添加一个设备树节点,并如何在驱动中提取出设备树的信息。
老规矩,代码从0开始编写,并且全部验证通过,并分享给大家。
二、测试平台
本次测试在开发板上操作,操作环境如下:
1. 编译环境
ubuntu 16.04
2. 交叉编译工具
root@ubuntu:/home/peng/linux-3.14# arm-none-linux-gnueabi-gcc -v
Using built-in specs.
COLLECT_GCC=arm-none-linux-gnueabi-gcc
COLLECT_LTO_WRAPPER=/home/peng/toolchain/gcc-4.6.4/bin/../libexec/gcc/arm-arm1176jzfssf-linux-gnueabi/4.6.4/lto-wrapper
Target: arm-arm1176jzfssf-linux-gnueabi
………………
gcc version 4.6.4 (crosstool-NG hg+default-2685dfa9de14 - tc0002)
3. 开发板
开发板:fs4412
soc:exynos4412
4. 内核版本
Linux kernel 3.14.0
三、内核解析设备树一般过程
- 系统启动后,uboot会从网络或者flash、sd卡中读取设备树文件(具体由uboot命令给出),
- 引导linux内核启动后,会把设备树镜像保存到的内存地址传递给Linux内核,Linux内核会解析设备树镜像,从设备树中提取硬件信息并逐一初始化。
- 其中设备树信息会被转换成struct platform_device类型变量。
- 而驱动要解析设备树,必须定义 struct platform_driver类型结构体变量,并通过函数platform_driver_register()注册。
- 这两者都会注册到platform总线,当驱动和设备树节点匹配成功后,就调用 struct platform_driver中.probe方法。
其中设备树节点会封装在struct device_node结构体变量中 各个属性信息会封装在 struct property结构体变量中, 他们与struct platform_device结构体之间关系如下:
四、驱动架构
以下是一口君编写的驱动架构,
我们只需要将测试代码填充到hello_probe()中即可:
static int hello_probe(struct platform_device *pdev)
{
printk("match ok \n");
//解析代码编写
return 0;
}
static int hello_remove(struct platform_device *pdev)
{
printk("hello_remove \n");
return 0;
}
static struct of_device_id beep_table[] = {
{.compatible = "yikoulinux"},
};
static struct platform_driver hello_driver =
{
.probe = hello_probe,
.driver.name = "duang",
.remove = hello_remove,
.driver = {
.name = "yikoupeng",
.of_match_table = beep_table,
},
};
static int hello_init(void)
{
printk("hello_init \n");
return platform_driver_register(&hello_driver);
}
static void hello_exit(void)
{
printk("hello_exit \n");
platform_driver_unregister(&hello_driver);
return;
}
MODULE_LICENSE("GPL");
module_init(hello_init);
module_exit(hello_exit);
五、设备树节点
下面是给出的设备树信息:
yikou_node{
compatible = "yikoulinux";
reg = <0x114000a0 0x4 0x139D0000 0x20>;
reg-names = "peng";
interrupt-parent=<&gpx1>;
interrupts =<1 2>,<2 2>;
csm_gpios=<&gpx2 3 0 &gpx2 4 0 &gpx2 5 0 &gpx2 6 0>;
crl0_gpio=<&gpx0 5 0>;
crl1_gpio=<&gpx0 6 0>;
rst_gpio=<&gpx0 7 0>;
cfg_gpio=<&gpx0 4 0>;
phy_ref_freq = <26000>; /* kHz */
suspend_poweroff;
clock-names = "xusbxti",
"otg";
yikou_node {
compatible = "leadcore,dsi-panel";
panel_name = "lcd_rd_rm67295";
refresh_en = <1>;
bits-per-pixel = <32>;
};
};
其中包括常见reg、中断、整型值、bool值、字符串、子节点、时钟等属性。
一定要注意,很多属性的给出会因为使用的SOC平台的不同有所差异, 下面介绍下GPIO和中断编写原理:
1. GPIO
gpio信息的给出有以下两种方法:
csm_gpios=<&gpx2 3 0 &gpx2 4 0 &gpx2 5 0 &gpx2 6 0>;
crl0_gpio=<&gpx0 5 0>;
crl1_gpio=<&gpx0 6 0>;
rst_gpio=<&gpx0 7 0>;
cfg_gpio=<&gpx0 4 0>;
第1种是公用同一个名字,第2种是每一个gpio单独使用1个名字。
gpio需要指明父节点,关于gpio父节点的说明下说明文档(通常linux-3.14\Documentation下有关于该内核版本的一些模块说明,很重要):
linux-3.14\Documentation\devicetree\bindings\gpio.txt
For example, the following could be used to describe gpios pins to use
as chip select lines; with chip selects 0, 1 and 3 populated, and chip
select 2 left empty:
gpio1: gpio1 {
gpio-controller
#gpio-cells = <2>;
};
gpio2: gpio2 {
gpio-controller
#gpio-cells = <1>;
};
[...]
chipsel-gpios = <&gpio1 12 0>,
<&gpio1 13 0>,
<0>, /* holes are permitted, means no GPIO 2 */
<&gpio2 2>;
Note that gpio-specifier length is controller dependent. In the
above example, &gpio1 uses 2 cells to specify a gpio, while &gpio2
only uses one.
gpio-specifier may encode: bank, pin position inside the bank,
whether pin is open-drain and whether pin is logically inverted.
Exact meaning of each specifier cell is controller specific, and must
be documented in the device tree binding for the device.
Example of the node using GPIOs:
node {
gpios = <&qe_pio_e 18 0>;
};
In this example gpio-specifier is "18 0" and encodes GPIO pin number,
and empty GPIO flags as accepted by the "qe_pio_e" gpio-controller.
翻译总结成如下几点:
- gpio父节点需要包含属性
gpio-controller、 表示是gpi控制器
#gpio-cells = <2>; 表示子节点包括2个属性
- 对于子节点是2个属性的函数 比如:
gpios = <&qe_pio_e 18 0>;
父节点是qe_pio_e 其中18表示GPIO pin值,就是gpio下面管理的pin脚序号,该pin值一般就需要查询用户手册&电路图。
2. 中断
中断属性节点如下:
interrupt-parent=<&gpx1>;
interrupts =<1 2>,<2 2>;
其中
interrupt-parent=<&gpx1>;: 该中断信号所述的中断控制器
interrupts =<1 2>,<2 2>; :描述中断属性,其中<>中第一个值表示该中断所述中断控制器index,第二个值表示中断触发方式
中断子节点格式如下:
linux-3.14\Documentation\devicetree\bindings\gpio.txt
Example of a peripheral using the GPIO module as an IRQ controller:
funkyfpga@0 {
compatible = "funky-fpga";
...
interrupt-parent = <&gpio1>; #父节点
interrupts = <4 3>; #节点属性
};
中断子节点说明文档如下:
linux-3.14\Documentation\devicetree\bindings\interrupt-controller\interrupts.txt
b) two cells
------------
The #interrupt-cells property is set to 2 and the first cell defines the
index of the interrupt within the controller, while the second cell is used
to specify any of the following flags:
- bits[3:0] trigger type and level flags
1 = low-to-high edge triggered 上升沿
2 = high-to-low edge triggered 下降沿
4 = active high level-sensitive 高电平有效
8 = active low level-sensitive 低电平有效
我们所填写的中断父节点gpx1定义如下(该文件由三星厂家出厂定制好):
linux-3.14\arch\arm\boot\dts\exynos4x12-pinctrl.dtsi
gpx1: gpx1 {
gpio-controller; #gpio控制器
#gpio-cells = <2>; #子节点有2个属性
interrupt-controller; #中断控制器
interrupt-parent = <&gic>; #父节点gic
interrupts = <0 24 0>, <0 25 0>, <0 26 0>, <0 27 0>, #子节点属性约束
<0 28 0>, <0 29 0>, <0 30 0>, <0 31 0>;
#interrupt-cells = <2>;
};
可见三星的exynos4412平台中gpx1,既可以做gpio控制器又可以做中断控制器,而gpx1作为中断控制器则路由到gic上。 其中interrupts属性说明如下:
linux-3.14\Documentation\devicetree\bindings\arm\gic.txt
Main node required properties:
- compatible : should be one of:
"arm,gic-400"
"arm,cortex-a15-gic"
"arm,cortex-a9-gic"
"arm,cortex-a7-gic"
"arm,arm11mp-gic"
- interrupt-controller : Identifies the node as an interrupt controller
- #interrupt-cells : Specifies the number of cells needed to encode an
interrupt source. The type shall be a <u32> and the value shall be 3.
The 1st cell is the interrupt type; 0 for SPI interrupts, 1 for PPI
interrupts.
The 2nd cell contains the interrupt number for the interrupt type.
SPI interrupts are in the range [0-987]. PPI interrupts are in the
range [0-15].
The 3rd cell is the flags, encoded as follows:
bits[3:0] trigger type and level flags.
1 = low-to-high edge triggered
2 = high-to-low edge triggered
4 = active high level-sensitive
8 = active low level-sensitive
bits[15:8] PPI interrupt cpu mask. Each bit corresponds to each of
the 8 possible cpus attached to the GIC. A bit set to '1' indicated
the interrupt is wired to that CPU. Only valid for PPI interrupts.
翻译总结:
interrupts = <0 24 0>
- 第1个0 表示该中断是SPI类型中断,如果是1表示PPI类型中断
- 24表示中断号(通过查询电路图和datasheet获得)
- 第三个0表示中断触发方式
再强调一遍 不同的平台gpio、中断控制器管理可能不一样,所以填写方法可能会有差异,不可教条
六、驱动提取设备树信息方法
驱动解析代码与设备树节点之间关系如下,代码与属性用相同颜色框出:
of开头的函数请参考《手把手教linux驱动11-linux设备驱动统一模型》
七、编译(ubuntu中操作)
驱动编译:
注意,内核必须提前编译好
设备树编译:
编译设备树命令,各个厂家的SDK都不尽相同,本例制作参考。
除此之外驱动模块文件、设备树文件如何导入给开发板,差别也比较大,本文不再给出步骤。
八、加载模块(开发板上操作)
加载模块后执行结果如下:
[root@peng test]# insmod driver.ko
[ 26.880000] hello_init
[ 26.880000] match ok
[ 26.880000] mem_res1 : [0x114000a0] mem_res2:[0x139d0000]
[ 26.885000] irq_res1 : [168] irq_res2:[169]
[ 26.890000] mem_resp:[114000a0]
[ 26.890000]
[ 26.895000] phy_ref_freq:26000
[ 26.900000] suspend_poweroff [true]
[ 26.900000] suspend_poweroff_test [false]
[ 26.900000]
[ 26.905000] csm_gpios :[231][232][233][234]
[ 26.910000] CTL0:[217] CTL1:[218] RST:[219] CFG:[216]
[ 26.915000] bits_per_pixel:32
[ 26.920000] panel_name:lcd_rd_rm67295
[ 26.925000] refresh_en [true]
其中打印的信息就是最终我们解析出的设备树里的硬件信息, 我们就可以根据这些信息进行相关资源申请、初始化。
同时设备树中的信息,会以文件节点形式创建在以下目录中:
相关推荐
- Linux两种光驱自动挂载的方法
-
环境:CentOS6.4西昆云服务器方式一修改fstab文件/etc/fstab是系统保存文件系统信息?静态文件,每一行描述一个文件系统;系统每次启动会读取此文件信息以确定需要挂载哪些文件系统。参...
- linux系统运维,挂载和分区概念太难?在虚机下操作一次全掌握
-
虚拟机的好处就是可以模拟和学习生产环境的一切操作,假如我们还不熟悉磁盘操作,那先在虚机环境下多操作几次。这次来练习下硬盘扩容操作。虚拟机环境:centos8vm11linux设备命名规则在linux中...
- Linux 挂载 NFS 外部存储 (mount 和 /etc/fstab)
-
mount:手工挂载,下次重启需再重新挂载,操作命令:mount-tnfs-ooptionsserver:/remote/export/local/directory上面命令中,本地目录...
- 在Linux中如何设置自动挂载特定文件系统(示例)
-
Linux...
- Linux环境中的绑定挂载(bind mount)
-
简介:Linux中的mount命令是一个特殊的指令,主要用于挂载文件目录。而绑定挂载(bindmount)命令更为特别。mount的bind选项将第一个目录克隆到第二个。一个目录中的改变将会在...
- Linux挂载CIFS共享 临时挂载 1. 首先
-
如何解决服务器存储空间不足的问题?大家好,欢迎回来。在上一期视频中,我为大家介绍了如何利用Linux挂载来扩容服务器存储空间。这一期视频,我将以Linux为例,教大家如何进行扩容。群辉使用的是Linu...
- Linux 硬盘挂载(服务器重启自动挂载)
-
1、先查看目前机器上有几块硬盘,及已挂载磁盘:fdisk-l能够查看到当前主机上已连接上的磁盘,以及已经分割的磁盘分区。(下面以/dev/vdb磁盘进行分区、挂载为例,挂载点设置为/data)df...
- linux 挂载磁盘
-
在Linux中挂载硬盘的步骤如下:...
- 笨小猪教您Linux磁盘挂载
-
本教程针对Linux系统比较熟悉或者想学习Linux基础的用户朋友,本教程操作起来比较傻瓜式,跟着步骤就会操作,本文使用的工具是XShell同时多多注意空格(文中会有提示)。【问答】什么是磁盘挂载?答...
- Linux 磁盘挂载和docker安装命令
-
本篇给大家介绍Linux磁盘挂载和docker安装的相关内容,Linux服务器的操作是一个手熟的过程,一些不常用的命令隔断时间就忘记了,熟话说好记性不如烂笔头,还需在平时的工作中多练习记录。...
- Linux设置开机自动挂载分区
-
有时候,我们在安装完Linux系统之后,可能在使用过程中添加硬盘或者分区进行使用,这时候就需要手动把磁盘分区挂载到某个路径,但是开机之后就会消失,需要重新挂载,非常麻烦,那么我们应该如何设置开机自动挂...
- 在linux挂载一个新硬盘的完整步骤
-
以下是在Linux中挂载新原始磁盘的完整步骤,包括分区、创建文件系统以及使用UUID在/etc/fstab中启动时挂载磁盘:将新的原始磁盘连接到Linux系统并打开电源。运行以下命令,...
- Linux系统如何挂载exFAT分区
-
简介:Linux系统中不能像Windows系统那样自动识别加载新设备,需要手动识别,手动加载。Linux中一切皆文件。文件通过一个很大的文件树来组织,文件树的根目录是:/,从根目开始录逐级展开。这些文...
- Linux系统挂载硬盘
-
fdisk-l查看可挂载的磁盘都有哪些df-h查看已经挂载的磁盘...
- WSL2发布,如何在Win10中挂载Linux文件系统
-
WSL2是最新版本的架构,它为Windows子系统提供支持,使其能够在Windows上运行ELF64Linux二进制文件。通过最近的更新,它允许使用Linux文件系统访问存储在硬盘中的文件。如果你...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- oracle忘记用户名密码 (59)
- oracle11gr2安装教程 (55)
- mybatis调用oracle存储过程 (67)
- oracle spool的用法 (57)
- oracle asm 磁盘管理 (67)
- 前端 设计模式 (64)
- 前端面试vue (56)
- linux格式化 (55)
- linux图形界面 (62)
- linux文件压缩 (75)
- Linux设置权限 (53)
- linux服务器配置 (62)
- mysql安装linux (71)
- linux启动命令 (59)
- 查看linux磁盘 (72)
- linux用户组 (74)
- linux多线程 (70)
- linux设备驱动 (53)
- linux自启动 (59)
- linux网络命令 (55)
- linux传文件 (60)
- linux打包文件 (58)
- linux查看数据库 (61)
- linux获取ip (64)
- 关闭防火墙linux (53)